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U. S. NAVAL POSTGRADUATE SCHOOL

.Monterey, California

GRAPHICAL FOURIER OPERATIONS

ABSTRACT: The graphical, symbolic function method of
evaluating the discrete or continuous Fourier
spectrum of a function is proved by use of sym-
bolic analysis.

After a review of pertinent symbolic func-
tion theory, the method is illustrated for several
problems including the non-finite polynomial
function case.

There exists a technique for finding Fourier Series coefficients which

generally is shorter than the usual integration technique. It is the purpose

of this report to show the most salient points of the method.

We shall first have to introduce a few concepts from the theory of

distributions.

Let us consider operator functions s(t), which operate inside integrals

on appropriate object functions 0(t) to produce functionals F s(),

Fs () =S b s (t)6 (Q)dt.

Clearly, if we change j (t) for fixed s(t), we will generate a mapping of

the function space [ (t) ] into the space F [ ); further if 6 (t) is con-

tinuous, analytic, etc., and s(t) is integrable, a continuous, linear

functional F () will result.

Suppose, alternately, we consider the class of functions ( J (t) I

known, define Fs () and ask what is s(t)? It soon becomes clear that

s(t) will not necessarily be analytic, in fact it may be impossible to



define an integr able function having the desired properties for s(t). Never-

theless, several such functions have proved to be of great usefulness.

Examples of such functions in common use are

1. Heaviside unit step function, Us(t)

2. Dirac unit impulse or delta function, 6(t)

3. The signed function, sgn(t)

4. The square function sq(t)

5. The convergence function cv (t)

These functions are called symbolic functions. The obvious questions are:

1. How are such functions to be defined and interpreted?

2. What properties do they have?

3. How may they be applied to problems?

We shall consider 1, 2, and the title of this report provides the application 3.

Def: Let f M (t)] be the class of functions of all continuous functions with

the properties

dn /dn exists,

(t) and all higher derivatives vanish at least as fast as

1/It at

LI(t) 2 dt<
Then the symbolic function s(t) is the linear mapping function, which maps

the space [ i (t) ] into the functional space F [ 6 (t) ] by means of inte-

gration.

It will turn out that in many cases the class of functions i d (t) ]

we have defined as the object space is too restrictive, i.e. , our conditions

on i (t) are sufficient but they may in some cases be more than necessary.
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In general, each exceptional case will have to be separately examined.

Let us now give the defining integrals for the various functions given as

examples.

1. The Heaviside unit step function

*Us (t) U U,6 (tt) dt = So 6 (t) dt

This is equivalent to an ordinary piecewise continuous function with

values:

Us(t) = 0 , t< 0

=1/2, t=o

=1 * t>O

2. The delta function 6(t)

8(t) .' 6(t) (t)dt = 6 (0)

This function cannot be defined in the ordinary sense; however it

behaves heuristically like:

8(t)=o , t#O

- t=0

such that 6 (t)dt = 1.

3. The signed function

sgn(t) 1 fsgn(t). (t)dt = S . (t)dt - d (t)dt

It is equivalent to the ordinary function

sgn(t)=-1 t <0

= 0, t=0

=+1 , t> 0,

4. The square or box car function

Wq(t ~ ~ (t) j (t) dt = ST (t) dt

3



It is equivalent to the ordinary function

sqT (t) =0 , t<0

1 1/2 , t= OT

-1 O<t <T

= 0 ,t>T

5. The convergence function cv a(t)

so that

cv (t) = e-Oit I, (C> 0).

Note that we have taken the limits on the integrals as - ); in

general we can talk about finite interval problems most easily by restricting

the space of functions j6 (t) ) to functions which vanish identically outside

the interval of interest. In addition, it is easily seen that the above ex-

amples do not exhaust the possible symbolic functions; one could produce

at least an indefinitely greater number just by multiplying a symbolic function

by the class of continuous, integrable functions and defining each resulting

function as a new symbolic function. A simple example which is fairly

common is the ramp function

rp(t) = tUs(t) = Qrp(t). (t)dt = J't (t)dt

which is shown in Figure 1.
rp(t)

0
Fig. 1
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Let us now consider what properties are possessed by symbolic

functions. First, they are linear mappings. If je. (t) and 46g (t) are any two

functions belonging to ( 4t) ) then for any symbolic function s(t) such -that

ar s(t)4 , (t)dt = aF (W), b _ s(t) 4(t)dt = bFs ( 4)

then

F a4A+b,4 s =f(t) [ag4(t) +b4. (t) )dt = Sos W a 1 (t) dt + rs(t) b 3 t)dt

F (aA) + F (b4) = ar.s (t) A (t) dt + bj, (t) (t) dt

= aFs(p ) + bFs(46)

Differentiability. Can any interpretation be given to s'(t) ? In order to

answer this two points are clear. We want s(t) to satisfy as many of the

usual properties of analysis as possible in order that it may have general

applicability and, we must define s'(t) by means of an integration process.

The second point leads us to consider the integral

rs '(t)6 (t) dt

and the first point suggests we try integration by parts. If integration by

parts were possible, one would have

frs'(t)46(Odt =s(t)x5(t) IJ -rs(t)4'(t)d&

= -_s(t)6 4' (t) dt

since by hypothesis 6 (t) vanishes as It I . Thus in order that

ordinary integration by parts be valid, we define s' (t) by:
I

DM: The derivative of a symbolic function s(t) is the mapping j6 (t) s-. -F s(')

s'(t) '* 5'(O(t) dt = -jr(t) '(t)dt

6 -F(4).

In like manner we have
(n) (t) (n (t)dt = (n-l) (t)6(t) r. (

(n-1 (t) id '(t) dt



so that by induction

s (n(t) (t)dt = (-1)nFS (n))

Thus we take

Def: The n t h derivative of a symbolic function s(t) is the mapping
(s(n) (ln s (n )) .

To make this clear, let us take as an example

s (t) = "(t) , . -at,

then

6,w8(t),-atdt -- - r.'t [eat ]' -a t -)(-l)r. ,1) [-at dt
=F {e-at, I,

(-a e-a(o) = a

Note that when we apply this to the sgn (t) function, we have

J_ c,,n ,-, ~ (t~dt = - J' Csgn(t) J'(t)dt = S'6. '(t)dt - r j'dtd
0

= tL_. - J6(t)l 0 21d(o) = 26 (t)] i(t) dt

so that operationally
I

Esgn(t) = 25(t)

i. e. , the two functions [ sgn(t)] and 28 (t) represent the same mapping.

DeS: Two symbolic functions s1 (t), s. (t) are said to be equal if and only

if they perform identical mappings on ( 4 (t) I i.e., if

6(t) S) Fs(), (t) -s Fs W) and if and onlyifF F8 ) =F S()

then

s1 (t) = s. (t)

Another useful result is obtained by considering the derivative of the

Heaviside function Us(t)
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.Us tWj6 (t) dt =- UsBt) (t) dt id W j(tdt =-id (t)"
J6(0

= (o)

8 (. 6() (t) dt

so that

Us(t) = 5(t)

There are many other useful results which may be derived; some will occur

in subsequent analyses. In particular we will mention a few more here

which are almost obvious

1 = Us(t) + Us(-t)

sgn(t) = Us(t) - Us(-t)

sgT(= Us(t) - Us(t-T)

We shall now prove a theorem which will be useful later.

Theorem: The derivative of a simply discontinuous function is the ordinary

derivative where it exists plus impulse functions times the magnitude of

jumps at the discontinuities.

Proof A discontinuous function f(t) with a jump of magnitude A at

at t = a may be represented by

f(t) = g(t) + A Us(t - a)

where g (t) is a continuous function. Since f (t) contains a symbolic function,

it is also a symbolic function. Now one can easily prove that if a& (t) and

as (t) are symbolic functions and if

83 (t) = Su(t)

then

st(t) = s(t)

C Hint: Apply ft (t) and s. (t) to j'(t) ). Hence
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f'(t) = g'(t) + A8(t - a) Q.E.D.

Thorm: If

(t) . ( )

and g(t) is a single valued function with a single valued inverse which vanishes

for t = to 8(g(t) ) = t

19N

or in general
J_ s(gt 1W L6tWdt= jg _=g= s(q)J6 (g_.Z (t) g'x dl

Fs ' -
i.e.,
fJ(t) S~)F f- rz-W g Ig1

Proof: Make change of variable. Q.E.D.

Fourier expansions:

We are now in position to consider the application of symbolic functions

to Fourier series. We note first of all that any periodic function. can, be written

as a sum of appropriately placed pulses.

V(t) = g n (t)
n = -.

where
gn (t) g g(t - nT)EU s (t - nT) -Us (t - (n + 1) T)

(See Fig. 2)

g(t-nT)

t
Fig. 2 nT (n+1) T
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Fig. 3 shows the sum of the terms g-, (t) + go (t) + g, (t) + gi, Wt

g(t+T) g (t) g(t-T) g(t-2T)

-T 0 T 2 T 3T t

* Fig. 3

Now if V(t) is periodic, it must also have a Fourier series representation

V~t=~ ke T

k =-

where

C 1fT V(4) e j 2-f 7k dkTf o ' T

Hence we have J2ffkt

V(t) i C ke T = Zg(t - nT[Us(t - nT -Us(t - n IJT]

-T T2T3T t

Fig. 4

Let us consider a typical waveform, the sawtooth wave (Fig. 4)

V(t) =Kt ,o~t<T

V(O = V(t +T), ali t.

or

n =-

9



Suppose we differentiate the equation; we have

v'(tE (,e21k) 12.k" T k T

k = -a

=i KC Uslt - nT) - Us(t -C n+ l'I T) I - KT6lt -[n+ 1 I
n _--

n
Fig. 5 shows the derivative of the nt h period ,(nT + ( to (n + 1) T+ l)

0, nT+ t (n +' )T(+

Fig. 5

and Fig. 6 the entire function

AV 1(t)

-K8 (t+T) T -KT8(t) -KT8(t-T) -KT8(t-2T) -KT6(t-3aT) etc.

-0T 2T 3T

Fig. 6

If we differentiate the equation again, we have
v #(t) = o ( j2vk "  j21r kt

k -

=O K[ 6 (t - nT) - 8(t -En+ 11T) -KT6'(t -[n + 1]IT

n =-0

Note (Fig. 7) that the resulting function V" (t) now contains only impulse

functions and derivatives of impulse functions.
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V' (t)

-T 0 T 2T 3T

Fig. 7

Let us see what the Fourier series representation is for such periodically

spaced impulse functions. We have, by application of the coefficient

formula to a delta function at t = a, where t <a<t + T

j 2 unt
8r(t " - f Cme T

-J 2 nt -j 2...
ST+ t -a) e T dt e T

or or j2 1m , (t -a )
8 T(t-a)-I f e T

T1

Further J2tm

1 ( t Tm )e
T Tm = -

these series representations should be committed to memory. Hence

j2wkt J 21
V't-(Jji f C -T- Y-F (t -nT)_ 1,

T k,<K T.
k=-m n=-u m=-e m=-e

ey--(t. - n+ 1T)

m -- --

11



=to~ ~ ~ i ?o (_O( )eJz--(t - [n+ I IT)

M=-W m=-W TT (tnl )

since the delta functions cancel. Now the coefficients of a Fourier series

are the same for any period of the function, hence the above expression

must hold independent of n. Let us take then the period for n = 0, i.e.,

from t = 0 to t = T, find Ck and then show that the result must hold when,

say, n = S. For the interval (0, T) we have for V" (t)

J 21rm

VA,(t) =, Ck( e ) e EO (K .3 )e -- t
k = M =-

This expression must hold for arbitrary times within (0,T), thus can only

be true if the coefficients of like exponential functions are equal. Hence

setting m = k

k T T

ingj21k

or
-K

Note if we had taken the A th interval of the function, the result is the

same since
-J 2 r ( A+ 1) T

CK e TOk = jk e

T

- -K(i ._L)
T

We have considered here the complete analytic solution of the problem
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apart from the constant term which may be in the original f(t) . This will

not be in our result because the constant disappears with differentiation.

Note also that the coefficient result indicates this, somewhat, in that C
0

does not exist. To obtain C we must do it in the conventional way
0

0 = rSolf()dj 2T

We then write

j 2ffkt

2 k= -e(l-ek,o)
T

where 8 k, 0 is the Kronecker delta

8 k,m= 0 ,k m

=1 ,k=m

The result proven for this specific function can clearly be generalized to

any periodic function0

Now in reveiwing our steps, we see that much time can be saved by doing

the problem graphically. Before we do another example, let us outline the

general method.

1. Draw several periods of g(t), the periodic function for which the

Fourier series is desired.

2. Graphically differentiate the function, putting in singularity

functions at the discontinuities.

3. Continue to differentiate the function until the resulting function

contains only delta functions or derivatives of delta functions

(non-polynomial functions will be considered subsequently).

4. Write the appropriate Fourier series for the resulting derivative

13



function by use of the series for a £th derivative of a delta function of

magnitude A located at t = a for a fundamental period T.

JW-i-(t - a)
A6 _t-a)= A--,-Em (J. -- P e (A= 0, 1, 2'F ...

Tk = -O

S. Suppose g(t) has been differentiated m times. C k the kth coefficient

of the Fourier series for g(t) is obtained by dividing the coefficients

of the series for dmg(t)/dm by( J wk P

6. Obtain the d.c. term in the usual manner.

f(t)=eat o<t<b

=0 , b<t< T.

f(t) = f(t + T)

We shall use the above procedure without comment and then consider the

mental steps involved.

If W

f W(t)-Tb e0 b t b)

8(t) i: at etc.

Note this is a case in which we will never get down to Just delta functions.

However, we see that in the period (0 , T)

f t) - af(t) + 8 (t - eab (t - b)

14



Now if
j~irkt

f() - 0 ke T
k i -e

then
F2k jf- af W Ck(-mf)-a.]

Hence

(~f ) 'a]

Mentally one follows somewhat the following process -- "I note f(t) is

periodically differentiable, hence I differentiate until I get f(t) back again.

In this case I see that

f (t)=af(t) + 8 (t) eab8 (t b)

or

f't-af(t) 8(t) eab (t -b)

The left side has a Fourier coefficient representation

C j[wk- a]

The right hand side has two delta functions both of period T. The first

is at the origin and hence has no phase factor. Its coefficient is just

l/T. The second delta function is of magnitude exp(ab), is negative in

sign, and will have a phase factor exp (C2 rk b) since it is located at b.

Hence its Fourier coefficient is

1 ab J"
T e e

The resulting series is thus

15



- j2vkb

k~) L T a

Do I need to put in the constant term? No, because in this case I have

actually synthesized the original function completely, including the

constant term. I also note In this case that, indeed, the value for k - 0

makes sense."

f(t) =ATsnbt 0 <t< bT-2w
2

=0 , <t <T

=f(t+ 7) , allt.

We shall do the work with no comment.

f (t)

77
0 T T 3T 2T t

Ab cos bt

a' T

f #(t)

Ab- 2 sin bt

f'(t) -b f(t) +AbCOlt) + 8 (t- T- ]

16



f+(t) bf(t) =Abr8(t) +8(t - T)

0 k --
___1__"____+ ,
A-e ,b= tT

.'. .,EV )a + b

k - ' TL ( '21k ).+_

The Fourier Intearal.

One can also apply this method to the Fourier Integral. All that is

required is to obtain an expansion for the delta function in the case of an

infinite period. We have for the representation of any Fourier Integral -

representable function

g(t) = f.GbeJZ ftdf

where

G(f) =J

Hence for the delta function at a point t - a

GW = ( 1 -8(t - a)eij2wftdt

=e

which is merely a delta function at t - 0 shifted to point a and hence

the phase factor. Thus

8(t -a) J_' ej ft -

Let us consider an example to illustrate the method

g(t) = kt Itl <c
-0 Itl>c
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Then as before

kt

g '(t)

-kc8(t + c) A-ka8(t - c)

-k

+ k8(t +c) -k8 (t -c)

Now if

then

g'(t) J'* 02wf)sG~fei fdf

so that

* g(t)=-kcO'(t + c) + k8(t + c) - kc8'(t - c) -k8(t - c).

Thus

G =t kc(J2irf)jI-e +j2-f-c -e -j2Yfc+ J2fc e j2ffc1

(j mf)2



This can be simplified to

cos 2 ir fc 2jk sin 21r fc

G(f)=-2kca( J2ffc ) + (J2f).j2'n2'ff

= 2jkca cos 2fc 2kc ( sin 2fc

2rfc 2vf 21fc

or

g(t) = k 21C cos 2wrfc - 1 s in2 v fc Ie j2vft df
- 2rfc 27Tf 2 vfc

Generalization of the Fourier Technique

The delta function allows the generalization of the Fourier Integral

technique to include the Fourier series in the case g(t) contains a

periodic function. This is possible because the delta function allows a

Fourier Integral of complex exponential functions.

If
j 2rkt

(t) = L c ke T = ce 2 kft fo
k k' T

then one has

G (f) [ ckeJ2 1rkfo j e-J2wftdt

=L c , 1  eij2vt [f - k fo] dt.
k -.

But

8(f- kfo)=J e- j 2 tEf-kfO° dt

so that

G1 (f) ck 8 (f - kfo) .

19



As usual

Ck~o 1~t+~ 0  1 (eZkfOt de.

Let us take an example to show the method. First, in general

g (t) =g3.(t) + gi(t)

where g, (t) is periodic with period T and g, (t) is non-periodic. Then the

spectral resolution of g(t) will be

G*f G G3,(f) + Gn(f)

-c 8k(f -kfO) +Go(f)
k=-k

= z8(f - kfO) .fOJ't fo g. (t)e J1fd4]+ j'*g@(&)ei 2 Wftd4
k =-a

= c(k ,fo) 8(f - kfo) + Gg (f
k = -k

Suppose we take the case where
T

g, (t) =A 0O<t< 2
T

=-A 2< t <T

g Wt

2AA

-3T - -T o T'T 3T 2

2-A-A -A T -A

20



We put a T subscript on the periodic 8 functions so that confusion will

not result. Then as usual

26 Tg 't)

0T

ck = 2Mf - 2Afoe -  1k ° •2 , G.Wf -=A -AeJ 2 2f --

J2Wkf o  0J2ff)

so that

GW(f) 2A 1 J(f - kf o ) + A E1 - *uhf/fo]
k "-s J2k j2wf

and thus

= 2A(1 WK) 8(f - kfo ) + AU - eiff/fO) t

k j21rk J2uf

Inverses of various Fourier Transforms;

Symbolic functions allow many inverse Fourier transforms to be

obtained by inspections. This is because many time functions of interest

can be generated by superposition of various symbolic functions.

The first fundamental symbolic function of use is the delta function,

after this we need the sgn(t) function. By consulting a table of integrals

one finds

21



Ssin2wft d( - + t>02f

= 0 , t=O
=--- t <0

We may write this symbolically as

j' sin 2ft d(2f) = -L- sgn(t)
0 2wf 2

Now sin 2wft/2irf is even in f so that

a sin 2irft d(20 = rsgn(t)
.. 2uf

We wish to express our result in exponential form so that we have

sin 2wrft
T sgn(t) - s 2wf

eJ 2 wft - e -J2ifft

e. (2J) 2wf

e j2eft + +j2wft df

2J(2wf) + 2 -(2J

* ej2d f t

= '=o JTf- d f

To obtain a representation for Us(t) we note that

Us(t) -= + -L sgn(t)

so that
= ej21rft

But

L 8M e J 2 wft2df

22



so that

Us(t) = + 1 df.
2 j2if

If, instead we want a Heaviside function to start at a we then have

*Us(t -a)= [8(f) + 1 e efftadf
2O J2nf

From this result we easily obtain

qT(t) = Us(t) - Us(t - T)

J.[Mf) + 1 eiZ7Tft 3 wf df

Again, from the integral tables we have

,os mx i -m
lxdx = , m>O

1+x 2

7T2,m=O

IT +m=+y-e m < 0

or

% -Im
2

Similarly to the above steps for Us(t)

21rf
2 1 cos .at 2wf, 2 J.I + 2.).

S j2 frft + e -J2 vft ) d,a + ,ZWrF-,  d

23



2 a eJ21r ft df
a2+ (2f)d

2v e 1 2 rft
- U= a'- (J2irf) df

The results are summarized in the table below:

g(t) F(g) = G(f)

8(t-a) ej 2 wfa

Us (t-a) a (2f) + 1-  e- j2 1ra

2 -J2rf

sgn(t-a) 2 e - j2 ' fm
J2irf

aq (t-a)[8(f) + 17 ][ e-j 2 vfa

20 -J2fm

cv(t-a) 2 jf

ka
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